

ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

### Time Series Modeling of Livebirths and Stillbirths at a Nigeria Teaching Hospital 2001 -2020.

### <sup>1</sup>A.I. Okegbade, <sup>2</sup>Abiola Opeyemi Egbewumi

<sup>1</sup>Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria. <sup>2</sup>Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria <sup>1</sup>aiokegbade@lautech.edu.ng. <sup>2</sup>egbewumiabiola1@gmail.com.

Correspodence Email: egbewumiabiolal@gmail.com.

Abstract: Livebirths and stillbirths are key public health indicators, with significant social and economic consequences. This study employs time series modeling to analyze quarterly records of livebirths and stillbirths obtained fom Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC), Ile-Ife, Nigeria, covering the period from 2001 to 2020. The Augmented Dickey Fuller test confirmed the stationarity of the series, after which the Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions were examined, identify suitable ARMA models. Model selection was guided by the Akaike Information criteria (AIC), Bayesian Information Criterion (BIC), and Hannan Quinn Criterion (HOIC). The models with the lowest information criteria ARMA (2,3) for livebirths and ARMA(1,3) for stillbirths were selected as optimal. Diagnostic checks revealed no significant autocorrelation in the residuals with ACF and PACF plots showing values close to zero across lags, confirming model adequacy and reliability. Forecast results indicate that livebirths will experience short term fluctuations before reaching a stable trend while stillbirth are projected to remain relatively constant at approximately 30 cases per quarter, though with broader confidence intervals at the start of the forest. The relatively low R2 values, particularly for stillbirths suggest that other unobserved variables such as healthcare accessibility, maternal risk factors and socio-economic conditions may also influence outcomes. Overall, the study emphasizes the importance of continuous improvements in maternal and child healthcare as well as the value of data driven decision making for public health planning and intervention.

Keywords: Livebirths, Stillbirths, ARMA models, Time Series, Forecasting, Nigeria, Hospital Records

### INTRODUCTION

Childbirth serves as a vital measures in global public health assessment, resulting in either livebirths and stillbirths, each with significant implications for the healthcare system. In Nigeria, the burden of stillbirths remains alarmingly high despite improvements in maternal health services. With recent estimates indicating over 40 stillbirths per 1000 births, there is a pressing need for the data driven methods to understand and address this issue. This study analyzes a 20 year trend of



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

livebirths and stillbirths using time series modelling, aiming to generate accurate forecasts and support evidence based policy decisions at OAUTHC, Ile-Ife.

Understanding livebirths and stillbirths is fundamental to advancing maternal and infant health. According to the World Health Organization (WHO, 2015), a livebirth is the complete expulsion or extraction from its mother of a product of conception, irrespective of the duration of pregnancy, which, after such separation, breathes or shows any other evidence of life, such as beating of the heart, pulsation of the umbilical cord, or any definite movement of voluntary muscles, whether or not the umbilical cord has been cut or the placenta is attached. This definition is critical for public health reporting and statistical analysis.

Stillbirth, on the other hand, is characterized by the absence of any signs of life following delivery. WHO, (2021) states that a stillbirth occurs when the fetus shows no signs of life after being fully delivered. In 2015, Nigeria was identified as having the second highest stillbirth rate globally, with estimated 317,700 stillbirths accounted for 12.2% of the 2.6 million estimated global stillbirths (Blencowe, et al., 2016, Okonofua, 2019). This suggests that Nigeria still makes substantial contribution to the global burden of stillbirths.

According to WHO estimates, approximately 2.4 million stillbirths occur annually, with the vast majority recorded in low and middle income nation (Lawn et al, 2016). Despite global progress in reducing child mortality, declines in stillbirth rate have been slower. The highest burden in Sub-Saharan Africa and South Asia, often resulting from preventable conditions such as maternal infections hypertensive disorders and complications during labor. These outcomes are further exacerbated by inadequate access to skilled birth attendants, delayed initiation of antenatal care and insufficient obstetric services further exacerbate these outcomes. Livebirths though influenced by similar factors, tends to respond more positively to improvements in healthcare services (Lawn et al., 2016; Hug et al., 2021; WHO, 2022). Research highlights that early antenatal care, maternal education, and access to emergency obstetric services are essential for improving childbirth outcomes. Factors such as higher parity, advanced maternal age, preeclampsia, diabetes, anemia increase the risk of stillbirth. Additionally, institutional deliveries and health system



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

improvement strategies like the implementation of partographs and maternal death audits contribute to improved livebirth rates and a reduced stillbirths (Kibret et al., 2023; Aminu et al., 2014; Chuwa et al., 2017; Lawn et al., 2016). Persistent challenges and such as cultural beliefs, stigma and inadequate data reporting hinder progress in addressing stillbirths, Stillbirths are often underreported or misclassified, unlike neonatal deaths, leading to gaps in healthcare planning (Lawn et al., 2016; Blencowe et al., 2020). Enhancing surveillance systems and adopting standardized definitions and reporting mechanism are essential for accurate tracking and effective interventions. Efforts to lower stillbirth rates must be embedded within comprehensive maternal and newborn health strategies. Addressing socioeconomic factors such as poverty, gender inequality and lack of education and gender inequality is also a fundamental (Bhutta et al., 2014; Lawn et al., 2016). In addition, policy changes that allocate more resources to maternal health and support community based initiatives can substantially improve childbirth outcomes (Tuncalp et al., 2015; WHO, 2020).

Several factors influence the likelihood of livebirth, such as maternal age, level of education, income, and access to healthcare services. Research indicates that younger women and those from more privileged backgrounds are more likely to experience livebirths (Mathews & Hamilton, 2016). Access to timely and adequate prenatal care plays a crucial vital role in ensuring healthy childbirth outcomes (Katz et al., 2015). In contrast, stillbirths are linked with several maternal and fetal risk, such as hypertension and diabetes, harmful behaviors such as smoking, and alcohol use, and fetal anomalies. Poor maternal nutrition and inadequate antenatal care have also been identified as major contributors (McClure et al., 2016). Beyond the medical implications, stillbirths can lead to long term psychological trauma for families and economic burdens. Support systems, including grief counseling, are therefore vital (Cacclatore et al., 2013). Additionally, stillbirths contribute to increased healthcare expenditures and productivity losses at the societal level.

Reducing stillbirth rates requires a combination of interventions, such as improving prenatal care, raising awareness about risk factors, and expanding maternal health education. The WHO's Every Newborn Action Plan calls for integrated approaches that tackle both medical and social



ISSN(Online): 3090-2959

Vol 2 no 1 (2026): January 2026 https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

contributors to the poor birth outcomes (WHO, 2014). Although progress has been made in boasting livebirth rates, stillbirth remains a major global health burden. By identifying and addressing the underlying causes through targeted health programs and policies, significant improvements in maternal and neonatal well being can be achieved. Previous studies have identified multiple maternal, fetal, and environmental risk factors contributing to stillbirths (Odendaal et al., 2021; Malacova et al., 2018). Moreover, the World Health Organization emphasizes the use of accurate and complete data in evaluating maternal health interventions.

In recent years, there has been growing interest in using timeseries modelling and spatial analysis to understand trends in livebirths and stillbirths. These approaches allow researchers to predict future patterns and identify high risk areas requiring targeted interventions (Gebremedhin et al., 2021; Liu et al., 2020). Additionally, there has been a shift in global health discourse towards including stillbirths in the broader maternal and child health agenda, particularly in the context of Sustainable Development Goal which aims to end preventable deaths of newborns and children under five (WHO, 2020; Blencowe et al., 2016).

### **METHOD**

The data used for this study consist of quarterly records of livebirths and stillbirths obtained from Obafemi Awolowo University Teaching Hospital Complex (OAUTHC), Ile-Ife, Nigeria spanning from 2001 to 2020. Data pre-processing was conducted to identify and adjust missing or outlier values. Series were aggregated quarterly to ensure comparability across years. A rolling-origin evaluation was implemented, using 2001–2017 as the training period and 2018–2020 as the testing period. Forecast performance was assessed using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Residual adequacy was evaluated with Ljung–Box and Jarque–Bera tests. The ARMA(p,q) structure was expressed as  $\Phi(L)yt=\Theta(L)\epsilon t+c\langle Phi(L)y_t = \langle Theta(L)\rangle varepsilon_t + c\Phi(L)yt=\Theta(L)\epsilon t+c,$  following conventional notation. Analyses were performed using GRETL (version 2025b) and Microsoft Excel (version 2023), and scripts are provided as supplementary material for reproducibility.



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

### RESULT AND DISCUSSION

### 4.1 Livebirths

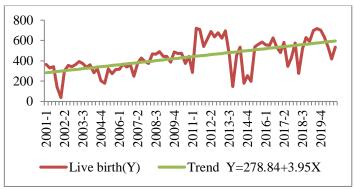



Figure 1: Upward Linear Trend of Livebirth

Figure 1: Shows an upward linear trend of livebirth was observed over the 20-year period which implies it is not a seasonal data.

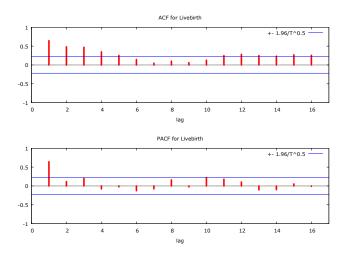



Figure 2: ACF and PACF plots at original level of number of live birth from 2001 to 2020.

Figure 2 above revealed that the first four lags in ACF plot exceeds the significance bounds, indicating the Prescence of autocorrelation in the series, similarly, the Partial Autocorrelation Function (PACF) plot reveals a significant spike at lag 1, with subsequent lags falling within the confidence limits. This suggests that the data may follow a mixed autoregressive moving average



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

 $\underline{https://journal.as\text{-}salafiyah.id/index.php/ijir/index}$ 

Email: ijireditor7@gmail.com

process, and potential candidate models include ARMA (1,1), ARMA(1,2), ARMA(1,3) and ARMA(1,4) models. These models are proposed for further evaluation based on model selection criteria such as AIC, BIC and residual diagnostics.

### 4.1.1 Test of Stationary for live birth of the original data from 2001 to 2020

The test of stationary is done by using Augmented Dickey Fuller test

Ho: The series is not stationary

H1: The series is stationary

Test Statistic:  $\alpha = 0.05$ 

| Augmented Dickey fuller | -0.352922 |
|-------------------------|-----------|
| P-value                 | 0.001950  |

Table 1: Result for Augmented Dickey Fuller (ADF) test at original Level

Table 1 above revealed that the Augmented Dickey Fuller test returned a p-value less than 0.05 indicating that the null hypothesis of a unit root is rejected at the 5% significance level. This implies that the time series is stationary, as it exhibits a constant mean and variance over time. In other words, there is no evidence of a unit root, confirming that the series does not require differencing for stabilization.

### 4.1.2 Model Identification

To get an appropriate time series model, the smallest value of the Akaike (AIC), Schwarz, and Hannan Quinn Criterion of the identified model is selected.

| S/N | Model       | Akaike Information<br>Criterion (AIC) | Schwarz<br>Criterion (BIC) | Hannan Quinn<br>Criterion (HQIC) |
|-----|-------------|---------------------------------------|----------------------------|----------------------------------|
| 1.  | ARMA (1,1)  | 996.8713                              | 1006.399                   | 1000.691                         |
| 2.  | ARMA (1,2)  | 997.7951                              | 1009.705                   | 1002.570                         |
| 3.  | ARMA (1,3)  | 997.0495                              | 1011.342                   | 1002.780                         |
| 4.  | ARMA (1,4)  | 997.1770                              | 1013.851                   | 1003.862                         |
| 5.  | ÀRIMA (2,1) | 998.4753                              | 1010.385                   | 1003.250                         |
| 6.  | ARIMA (2,2) | 998.7319                              | 1013.024                   | 1004.462                         |
| 7.  | ARMA (2,3)  | 990.1766                              | 1006.851                   | 996.8618                         |
| 8.  | ARMA (2,4)  | 992.0821                              | 1011.138                   | 999.7223                         |
| 9.  | ARIMA (3,1) | 997.8235                              | 1012.116                   | 1003.554                         |
| 10. | ARMA (3,2)  | 999.8183                              | 1016.493                   | 1006.503                         |
| 11. | ARMA (3,3)  | 992.0782                              | 1011.134                   | 999.7184                         |
| 12. | ARMA (3,4)  | 992.3840                              | 1013.822                   | 1000.979                         |
| 13. | ARMA (4,1)  | 999.8184                              | 1016.493                   | 1006.504                         |



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

| Email: | <u>ijireditor/@gmail.c</u> |
|--------|----------------------------|
| 1 901  | 1000 485                   |

| 14. | ARMA (4,2) | 992.8446 | 1011.901 | 1000.485 |
|-----|------------|----------|----------|----------|
| 15. | ARMA (4.3) | 994.0780 | 1015.516 | 1002.673 |
| 16. | ARMA (4,4) | 993.1728 | 1016.993 | 1002.723 |

**Table 2:** Result for Model Identification using ARMA (p,q) for live birth

Table 2: reveals that among the evaluated models, ARMA (2,3) model recorded the lowest values for both the Akaike Information Criterion (AIC) and Hannan-Quinn Information Criterion (HQIC) when compared to other competing models. This suggests that ARMA (2,3) offers the best fit to the data based on these model selection criteria.

### 4.1.3 Model Estimation

| Schwarz criterion           | 1006.851               |                       | Hannan-Qui                     |                    | 996.8618             |
|-----------------------------|------------------------|-----------------------|--------------------------------|--------------------|----------------------|
| R-squared<br>Log-likelihood | 0.548518<br>-488.088   |                       | Adjusted R-sq<br>Akaike criter |                    | 0.524439<br>990.1766 |
| Mean of innovations         | -1.37132               |                       | S.D. of innova                 |                    | 104.0612             |
| Mean dependent var          | 438.9875               |                       | S.D. depender                  |                    | 155.7042             |
| theta_3                     | 0.452170               | 0.126634              | 3.571                          | 0.0004             | ***                  |
| theta_2                     | 0.306297               | 0.191290              | 1.601                          | 0.1093             |                      |
| theta_1                     | -1.08199               | 0.140404              | -7.706                         | < 0.0001           | ***                  |
| phi_2                       | -0.725061              | 0.104091              | -6.966                         | < 0.0001           | ***                  |
| phi_1                       | 1.50287                | 0.110711              | 13.57                          | < 0.0001           | ***                  |
| Const                       | Coefficient<br>440.808 | Std. Error<br>34.8072 | z<br>12.66                     | p-value<br><0.0001 | ***                  |

|    |        | Real    | Imaginary | Modulus | Frequency |
|----|--------|---------|-----------|---------|-----------|
| AR |        |         |           |         |           |
|    | Root 1 | 1.0364  | -0.5524   | 1.1744  | -0.0779   |
|    | Root 2 | 1.0364  | 0.5524    | 1.1744  | 0.0779    |
| MA |        |         |           |         |           |
|    | Root 1 | 0.7671  | -0.6416   | 1.0000  | -0.1109   |
|    | Root 2 | 0.7671  | 0.6416    | 1.0000  | 0.1109    |
|    | Root 3 | -2.2116 | 0.0000    | 2.2116  | 0.5000    |

Table 3: Result of the estimated parameter of ARMA for Live birth Model 1: ARMA, using observations 2001:1-2020:4 (T = 80)

Dependent variable: Livebirth Standard errors based on Hessian

The ARMA (2,3) model with equation  $Y_t = 440.808 + 1.50286\varphi_1 - 0.725061\varphi_2 - 1.08199\theta_1 + 0.306295\theta_2 + 0.452171\theta_3$  was estimated to assess the quarterly pattern of livebirths from 2021 to 2020, using 80 observations. The results presented in table 3 above show



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

that constant term (440.808) is statistically significant (p<0.0001), indicating a stable average level of livebirths over the period. Both autoregressive components,  $\phi_1$  (1.50287) and  $\phi_2$  (-0.72506), were highly significant (p<0.0001), suggesting strong temporal dependence in the series. Similarly, two out of the three moving average terms,  $\theta_1$  (-1.08199) and  $\theta_3$  (0.45217), were significant (p=0.1093). The model explained approximately 55% of the variation in livebirths  $(R^2=0.5485)$ , indicating a moderate goodness of fit. The standard deviation of the innovations (104.06) was lower than that of dependent variable (155.70), showing reduced unexplained variability after modeling. The roots of the AR components had moduli greater than one, confirming stationarity, while the MA roots indicated near invertibility, with one root at the boundary (modulus = 1.000). Overall, the model demonstrates a reasonably good fit for forecasting livebirths, with adequate stability and statistical significance in the key parameters. Furthermore, in the context of global health targets such as the Sustainability Development Goal (SDG) 3, which aims to ensure healthy lives and promote well being for all at all ages, predictive models like this can help track progress in maternal and child health. This model allow for early identification of trends and potential shortfalls, enabling evidences based interventions to reduce maternal and neonatal mortality.

### 4.1.4 Model Diagnostic Checking

Model diagnosis is done to check if the model selected is really the appropriate one. The following tests are applied to the residual.

Test for autocorrelation and partial Autocorrelation function

Hypothesis:

Ho: There is no autocorrelation within the residual of the fitted model

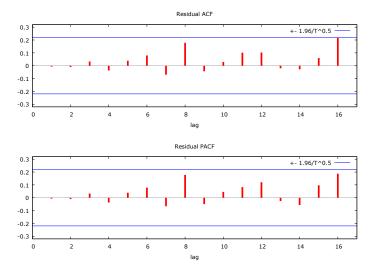
H<sub>1</sub>: There is autocorrelation within the residual of the fitted model

Test Statistic:  $\alpha$ =0.05

Critical Value: Residual autocorrelation function \*\*\*, \*\*, \* indicate significance at the 1%, 5%, 10% levels using standard error 1/T^0.5



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026


https://journal.as-salafiyah.id/index.php/ijir/index

Email: iiireditor7@email.com

|    |          |          | Email: <mark>ijir</mark> | <u>editor/@gmail.com</u> |
|----|----------|----------|--------------------------|--------------------------|
| 1  | -0.0071  | -0.0071  |                          |                          |
| 2  | -0.0103  | -0.0103  |                          |                          |
| 3  | 0.0327   | 0.0325   |                          |                          |
| 4  | 0.0374   | 0.037    |                          |                          |
| 5  | 0.0385   | 0.0388   |                          |                          |
| 6  | 0.0796   | 0.0785   | 0.9158                   | [0.339]                  |
| 7  | -0.0701  | -0.0666  | 1.3571                   | [0.507]                  |
| 8  | 0.1782   | 0.1779   | 4.2511                   | [0.236]                  |
| 9  | -0.0434  | -0.0501  | 4.4249                   | [0.352]                  |
| 10 | 0.0289   | 0.0453   | 4.5034                   | [0.479]                  |
| 11 | 0.1017   | 0.0826   | 5.4869                   | [0.483]                  |
| 12 | 0.1028   | 0.1207   | 6.5064                   | [0.482]                  |
| 13 | -0.0202  | -0.0261  | 6.5465                   | [0.586]                  |
| 14 | -0.0279  | -0.0566  | 6.6237                   | [0.676]                  |
| 15 | 0.0596   | 0.0971   | 6.9822                   | [0.727]                  |
| 16 | 0.2161 * | 0.1871 * | 11.7708                  | [0.381]                  |

**Table 4:** Residual for Autocorrelation function for the number of Live birth.

Table 4 revealed that the null hypothesis of no autocorrelation in the residual is not rejected, as the p-value exceeds the 0.05 significance level. This indicates that there is no significant autocorrelation remaining in the residuals of the fitted model. Therefore, the ARMA(2,3) model appears to be an adequate fit for the data.



International Journal of Interdisciplinary Research 69 Vol 2 no 1 (2026): January 2026



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: <u>ijireditor7@gmail.com</u>

Figure 3: Residual ACF and PACF of the Best ARIMA Model for Live birth

Figure 3 revealed the correlogram of residuals, stating that the ACF and PACF plots of the residual from lag 1 to lag 16 show values that hover closely around the zero line, with no significant spikes. This indicates the absence of autocorrelation in the residuals, thereby confirming that the model is valid and adequately captures the underlying structure of the data.

| Observation | prediction | std. error | 95% interval       |
|-------------|------------|------------|--------------------|
| 2021:1      | 445.584    | 104.061    | (241.627, 649.540) |
| 2021:2      | 343.792    | 112.902    | (122.508, 565.076) |
| 2021:3      | 325.178    | 115.072    | (99.6400, 550.716) |
| 2021:4      | 337.374    | 124.964    | (92.4491, 582.298) |
| 2022:1      | 369.199    | 137.392    | (99.9153, 638.483) |
| 2022:2      | 408.186    | 146.375    | (121.296, 695.075) |
| 2022:3      | 443.702    | 150.379    | (148.964, 738.440) |
| 2022:4      | 468.810    | 151.146    | (172.570, 765.050) |
| 2023:1      | 480.793    | 151.161    | (184.523, 777.063) |
| 2023:2      | 480.597    | 151.831    | (183.013, 778.181) |
| 2023:3      | 471.614    | 153.125    | (171.495, 771.733) |
| 2023:4      | 458.256    | 154.363    | (155.710, 760.802) |
| 2024:1      | 444.693    | 155.083    | (140.736, 748.651) |
| 2024:2      | 433.996    | 155.304    | (129.606, 738.387) |
| 2024:3      | 427.754    | 155.313    | (123.347, 732.161) |
| 2024:4      | 426.128    | 155.354    | (121.641, 730.616) |
| 2025:1      | 428.212    | 155.491    | (123.455, 732.968) |
| 2025:2      | 432.521    | 155.659    | (127.435, 737.607) |
| 2025:3      | 437.487    | 155.780    | (132.164, 742.810) |
| 2025:4      | 441.825    | 155.831    | (136.403, 747.248) |
| 2026:1      | 444.745    | 155.838    | (139.308, 750.182) |
| 2026:2      | 445.987    | 155.839    | (140.548, 751.426) |
| 2026:3      | 445.737    | 155.852    | (140.273, 751.201) |
| 2026:4      | 444.460    | 155.873    | (138.955, 749.966) |

Table 5: Result for the Forecast of Live birth from 2021 to 2023 For 95% confidence intervals, z(0.025) = 1.96

Mean Absolute Error (MAE) = 76.902,

Root Mean Squared Error (RMSE) = 103.52,

Mean Absolute Percentage Error (MAPE) = 28.876



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

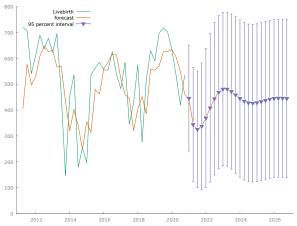



Figure 4: Forecast of Live birth from 2021 to 2026

Table 5 and Figure 4 above revealed the forecasted values of livebirths from the first quarter of 2021 to the fourth quarter of 2026 reveal a dynamic trend with key implication for public health planning. Initially, the predicted number of livebirths declines from 445.584 in 2021:1 to 325.178 in 20121:3, followed by gradual recovery and sustained growth peaking at 480.793 in 2023:1. From that point, the forecast shows a mild decline, stabilizing around the mid 440s by 2026. The 95% confidence interval, computed using a z-score of 1.96, indicate increasing uncertainty in the forecast over time, as reflected in the widening intervals. This suggests that while the central predictions remain relatively stable in later years, the degree of variability is significant and must be considered in healthcare resource planning. A narrowing of the gap between the lower and upper bounds from 2023 onward indicates improved predictability, potentially due to stabilization in birth patterns. These forecasts emphasize the importance of strengthening maternal and child health services, especially in anticipation of periodic increase in livebirths. The evaluation of the ARMA (2,3) model for livebirth forecasts from 2021 to 2026 produced a Mean Absolute Error (MAE) of 76.902, a Root Mean Square Error (RMSE) of 103.52 and Mean Absolute Percentage Error (MAPE) of 28.88%. These results indicate that, on average, the model's predictions deviate by about 77 births per quarter from the observed values. The RMSE being slightly higher than MAE suggests the presence of occasional larger deviations, though not excessively high. The MAPE value of 28.88% reflects a moderate level of forecasting accuracy, implying that the model



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

predicts livebirths with approximately 71% accuracy. Overall, the ARMA(2,3) model demonstrates a reasonable predictive performance, suitable for short term forecasting of livebirths, though further model refinement or inclusion of additional explanatory variables such as maternal health or socio economic factors) could improve accuracy.

#### 4.2 **Stillbirths**

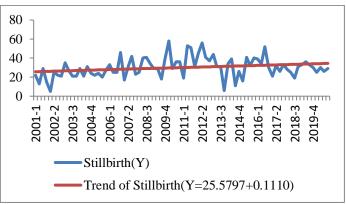



Figure 5: Upward Linear Trend of Stillbirth

Figure 5: Shows a linear increasing trend of stillbirths, less pronounced than livebirths, which implies it is not a seasonal data since it does not follow a regular pattern and also has a trend.

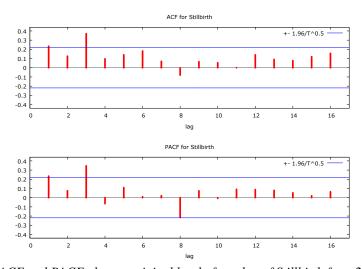



Figure 6: ACF and PACF plots at original level of number of Stillbirth from 2001 to 2020



ISSN(Online): 3090-2959

Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

Figure 6 above revealed that the first and the third lags in ACF plot exceeds the significance bounds, indicating the Prescence of autocorrelation in the series, similarly, the Partial Autocorrelation Function (PACF) plot reveals a significant spike at lag 1 and lag 3, with the remaining lags falling within the confidence limits. This suggests that the data may follow a mixed autoregressive moving average process, and potential candidate models include ARMA (1,1), ARMA(1,3), ARMA(3,1) and ARMA(3,3) models. These models are proposed for further evaluation based on model selection criteria such as AIC, BIC and residual diagnostics.

| Augmented Dickey fuller | -0.765746  |
|-------------------------|------------|
| P-value                 | 1.609e-007 |

Table 6: Result for Augmented Dickey Fuller (ADF) test at Original Level of number of stillbirth

Table 6 above revealed that the Augmented Dickey Fuller test returned a p-value less than 0.05 indicating that the null hypothesis of a unit root is rejected at the 5% significance level. This implies that the time series is stationary, as it exhibits a constant mean and variance over time. In other words, there is no evidence of a unit root, confirming that the series does not require differencing for stabilization.

### 4.2.1 Model Identification

To get an appropriate time series model, the smallest value of the Akaike, Schwarz, and Hannan Quinn Criterion of the identified model is selected.

| S/N | Model       | Akaike Information | Schwarz Criterion | Hannan-Quinn Criterion |
|-----|-------------|--------------------|-------------------|------------------------|
|     |             | Criterion (AIC)    | (AIC)             | (HQIC)                 |
| 1.  | ARMA (1,1)  | 600.6147           | 610.1428          | 604.4348               |
| 2   | ARMA (1,2)  | 602.6021           | 614.5122          | 607.3772               |
| 3   | ARMA (1,3)  | 597.7584           | 612.0506          | 603.4885               |
| 4   | ARMA (1,4)  | 599.0405           | 615.7147          | 605.7257               |
| 5   | ARMA (2,1)  | 602.6082           | 614.5183          | 607.3833               |
| 6   | ARMA (2,2)  | 599.5910           | 613.8832          | 605.3212               |
| 7   | ARMA (2,3)  | 598.3764           | 615.0506          | 605.0616               |
| 8   | ARIMA (2,4) | 600.3763           | 619.4325          | 608.0165               |
| 9   | ARMA (3,1)  | 598.1364           | 612.4286          | 603.8666               |
| 10  | ARMA (3,2)  | 598.2832           | 614.9574          | 604.9683               |
| 11  | ARMA (3,3)  | 600.2506           | 619.3069          | 607.8908               |
| 12  | ARMA (3,4)  | 602.2506           | 623.6889          | 610.8458               |

**Table 7**: Result for model identification ARMA (p,q) for number of Stillbirth



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

**Table 7:** reveals that among the evaluated models, ARMA(1,3) model recorded the lowest values for both the Akaike Information Criterion (AIC) and Hannan-Quinn Information Criterion (HQIC) when compared to other competing models. This suggests that ARMA(1,3) offers the best fit to the data based on these model selection criteria.

### 4.2.2 Model Estimation

Model 2: ARMA, using observations 2001:1-2020:4 (T = 80)

Dependent variable: Stillbirth Standard errors based on Hessian

| Stand | ard errors based on | Hessian     |            |                     |          |      |
|-------|---------------------|-------------|------------|---------------------|----------|------|
|       |                     | Coefficient | Std. Error | Z                   | p-value  |      |
|       | const               | 29.7229     | 2.25695    | 13.17               | < 0.0001 | ***  |
|       | phi_1               | 0.677339    | 0.165183   | 4.101               | < 0.0001 | ***  |
|       | theta_1             | -0.444816   | 0.193571   | -2.298              | 0.0216   | **   |
|       | theta_2             | -0.255970   | 0.133428   | -1.918              | 0.0551   | *    |
|       | theta_3             | 0.412025    | 0.131434   | 3.135               | 0.0017   | ***  |
|       | Mean dependent var  | 30.0750     | 00         | S.D. dependent var  | 10.4     | 8902 |
|       | Mean of innovations | 0.14734     | 19         | S.D. of innovations | 9.37     | 0094 |
|       | R-squared           | 0.19388     | 35         | Adjusted R-squared  | 0.16     | 2064 |
|       | Log-likelihood      | -292.87     | 92         | Akaike criterion    | 597.     | 7584 |
|       | Schwarz criterion   | 612.050     | )6         | Hannan-Quinn        | 603.     | 4885 |
|       |                     | Real        | Imaginary  | Modulus             | Freque   | ncy  |
| AR    |                     |             |            |                     |          |      |
|       | Root 1              | 1.4764      | 0.0000     | 1.4764              | 0.000    | 00   |
| MA    |                     |             |            |                     |          |      |
|       | Root 1              | 1.0088      | 0.8487     | 1.3183              | 0.111    | .3   |
|       | Root 2              | 1.0088      | -0.8487    | 1.3183              | -0.11    | 13   |
|       | Root 3              | -1.3964     | 0.0000     | 1.3964              | 0.500    | 00   |

Table 8: Result of the estimated parameter of ARMA of still birth

ARMA (1,3) model with equation  $Y_t = 29.7229 + 0.677339 \phi_1 - 0.444816 \theta_1 - 0.255970 \theta_2 + 0.412025 \theta_3$  estimated a statistically significant autoregressive component ( $\phi_1$ =0.677, p<0.0001), suggesting that the current number of stillbirths is strongly influenced by the preceding quarter. Additionally, three moving average components were included with  $\theta_1$ (-0.446, p=0.0216),  $\theta_2$ (-0.256, p = 0.0551) and  $\theta_3$ (0.412, p = 0.0017) being statistically significant indicating that random shocks in stillbirths persist but diminish over time. The constant term



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

(29.72) reflects the average underlying level of stillbirths after accounting for temporal dependencies. However, the relatively low  $R^2(0.19)$  implies that the model explains only 19% of the variation in stillbirths, suggesting other observed factors such as maternal health, healthcare access, or socio-economic conditions may play significant roles.

### 4.2.2 Model Diagnostic Checking

Model diagnosis is done to check if the model selected is really the appropriate one. The following tests are applied to the residual.

Test for autocorrelation and partial Autocorrelation function

### Hypothesis:

H<sub>0</sub>: There is no autocorrelation within the residual of the fitted model

H<sub>1</sub>: There is autocorrelation within the residual of the fitted model

Test Statistic:  $\alpha$ =0.05

Critical Value: Residual autocorrelation function indicate significance at the 1%, 5%, 10% levels using standard error 1/T^0.5

### Hypothesis:

H<sub>0</sub>: There is no autocorrelation within the residual of the fitted model

H<sub>1</sub>: There is autocorrelation within the residual of the fitted model

Test Statistic:  $\alpha$ =0.05

Critical Value: Residual autocorrelation function indicate significance at the 1%, 5%, 10% levels using standard error 1/T^0.5

| LAG | ACF     | PACF      | Q-stat. | [p-value] |
|-----|---------|-----------|---------|-----------|
| 1   | -0.0212 | -0.0212   |         |           |
| 2   | 0.0620  | 0.0616    |         |           |
| 3   | 0.0156  | 0.0183    |         |           |
| 4   | -0.1398 | -0.1436   |         |           |
| 5   | 0.0327  | 0.0256    | 2.1623  | [0.141]   |
| 6   | 0.0389  | 0.0600    | 2.2968  | [0.317]   |
| 7   | 0.0493  | 0.0526    | 2.5153  | [0.473]   |
| 8   | -0.1560 | -0.1884 * | 4.7312  | [0.316]   |



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

|    |         |         | Email: <mark>iji</mark> | <u>ireditor7@gmail.com</u> |
|----|---------|---------|-------------------------|----------------------------|
| 9  | -0.0071 | -0.0136 | 4.7359                  | [0.449]                    |
| 10 | -0.0292 | 0.0115  | 4.8155                  | [0.568]                    |
| 11 | 0.0646  | -0.0473 | 5.2127                  | [0.634]                    |
| 12 | 0.1064  | 0.0512  | 6.3057                  | [0.613]                    |
| 13 | 0.0142  | 0.0294  | 6.3253                  | [0.707]                    |
| 14 | 0.0904  | 0.1002  | 7.1369                  | [0.712]                    |
| 15 | 0.0808  | 0.0827  | 7.7952                  | [0.732]                    |
| 16 | 0.1612  | 0.1637  | 10.4588                 | [0.576]                    |

**Table 9:** Residual for Autocorrelation Function for the Number of Stillbirths

Table 9 revealed that the null hypothesis of no autocorrelation in the residual is not rejected, as the p-value exceeds the 0.05 significance level. This indicates that there is no significant autocorrelation remaining in the residuals of the fitted model. Therefore, the ARMA (1,3) model appears to be an adequate fit for the data.

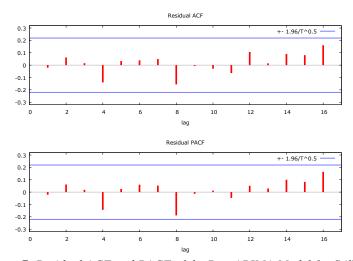



Figure 7: Residual ACF and PACF of the Best ARIMA Model for Stillbirth

Figure 7 revealed the correlogram of residuals, stating that the ACF and PACF plots of the residual from lag 1 to lag 16 show values that hover closely around the zero line, with no significant spikes. This indicates the absence of autocorrelation in the residuals, thereby confirming that the model ARMA (1,3) is valid and adequately captures the underlying structure of the data.

For 95% confidence intervals, z(0.025) = 1.96



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

| interdisciplinary Research |                   |              | Email: ijireditor7@gmail.com |
|----------------------------|-------------------|--------------|------------------------------|
| 2021:1                     | 29.7517           | 9.37009      | (11.3867, 48.1168)           |
| 2021:2                     | 26.4700           | 9.62007      | (7.61505, 45.3250)           |
| 2021:3                     | 28.3299           | 9.66421      | (9.38836, 47.2714)           |
| 2021:4                     | 28.7793           | 10.1915      | (8.80434, 48.7544)           |
| 2022:1                     | 29.0838           | 10.4245      | (8.65212, 49.5155)           |
| 2022:2                     | 29.2900           | 10.5297      | (8.65220, 49.9278)           |
| 2022:3                     | 29.4297           | 10.5776      | (8.69799, 50.1614)           |
| 2022:4                     | 29.5243           | 10.5995      | (8.74967, 50.2989)           |
| 2023:1                     | 29.5884           | 10.6095      | (8.79408, 50.3827)           |
| 2023:2                     | 29.6318           | 10.6141      | (8.82847, 50.4351)           |
| 2023:3                     | 29.6612           | 10.6162      | (8.85373, 50.4686)           |
| 2023:4                     | 29.6811           | 10.6172      | (8.87175, 50.4904)           |
| 2024:1                     | 29.6946           | 10.6177      | (8.88437, 50.5048)           |
| 2024:2                     | 29.7037           | 10.6179      | (8.89311, 50.5143)           |
| 2024:3                     | 29.7099           | 10.6179      | (8.89911, 50.5207)           |
| 2024:4                     | 29.7141           | 10.6180      | (8.90322, 50.5250)           |
| 2025:1                     | 29.7169           | 10.6180      | (8.90602, 50.5279)           |
| 2025:2                     | 29.7189           | 10.6180      | (8.90792, 50.5298)           |
| 2025:3                     | 29.7202           | 10.6180      | (8.90922, 50.5311)           |
| 2025:4                     | 29.7210           | 10.6180      | (8.91010, 50.5320)           |
| 2026:1                     | 29.7216           | 10.6180      | (8.91069, 50.5326)           |
| 2026:2                     | 29.7220           | 10.6180      | (8.91110, 50.5330)           |
| 2026:3                     | 29.7223           | 10.6180      | (8.91137, 50.5333)           |
| 2026:4                     | 29.7225           | 10.6180      | (8.91156, 50.5335)           |
|                            | 11 10 D 1.C .1 C. | 1111 1 1 5 0 | 2021 - 2022                  |

Table 10: Result for the Stillbirth Forecast from year 2021 to 2023

Mean Percentage Error (MPE) = -15.901,

Root Mean Squared Error (RMSE) = 9.457,

Mean Absolute Percentage Error (MAPE) = 33.893



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

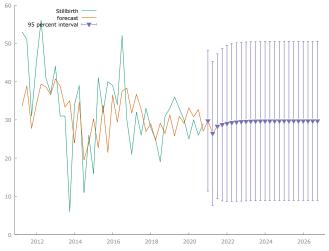



Figure 8: Forecast of Stillbirths From 2021 to 2026

Table 10 and Figure 7 above revealed the forecasted values of stillbirths from 2021 to 2026 indicate a relatively stable trend, with point estimates hovering around 29 to 30 cases per quarter. While the central predictions suggest little variation over time, the associated 95% confidence intervals highlight considerable uncertainty, particularly in the earlier years. As the forecast progresses, the prediction intervals narrow slightly and stabilize suggesting increasing confidence in the estimates as the model settles around a long term average. However, with standard errors remaining above 10, the range of the outcomes remain wide, implying that unexpected surges in stillbirths remain possible. The ARMA(1,3) model used for forecasting stillbirths from 2021 to 2026 yielded a Mean Percentage Error (MPE) of 15.901, a Root Mean Square Error (RMSE) of 9.457, and a Mean Absolute Percentage Error (MAPE) of 33.893%. The positive MPE value suggests that the model tends to slightly over predict stillbirth with forecasts averaging about 15.95 above the observed values. The RMSE of 9.46 indicates that the typical forecast deviation is approximately nine stillbirths per quarter. The MAPE value of 33.89% implies that the model's predictions differ from the actual values by about one-thrd on average, corresponding to a forecasting accuracy of around 66%. Overall, the ARMA(1,3) model demonstrates a moderate predictive performance for stillbirth forecasts, though its accuracy is lower than that of livebirth model. This suggests that stillbirth trends may be influenced by additional unobserved factors such



ISSN(Online): 3090-2959

Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

as maternal risk, healthcare access or socioeconomic conditions that are not fully captured by the time series pattern alone.

### **Discussion**

This study set out to model and forecast quarterly livebirths and stillbirths at a major Nigerian teaching hospital over a 20-year period using ARMA time series techniques. The findings demonstrate that relatively simple stochastic models can capture important temporal patterns in birth outcomes and provide useful short- to medium-term forecasts for planning purposes.

For livebirths, the selected ARMA (2,3) model showed a moderate explanatory power, accounting for about 55% of the variation in the series. The significant autoregressive and moving average parameters indicate strong temporal dependence, consistent with the idea that birth volumes in one quarter are shaped by underlying demographic momentum, service capacity, and past demand. The forecast trajectory suggests short-term fluctuations followed by stabilization around the mid-400s livebirths per quarter. Although the error metrics (MAE  $\approx$  77; MAPE  $\approx$  29%) indicate only moderate accuracy, they are acceptable for aggregate hospital-level forecasting, especially given the absence of explanatory covariates. From a public health standpoint, this pattern implies that maternity services at Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC) can anticipate a relatively stable but non-negligible workload, reinforcing the need for sustained investment in staffing, supplies, and emergency obstetric care.

In contrast, the ARMA(1,3) model for stillbirths, while statistically adequate in terms of residual diagnostics, explained only about 19% of the variation in the series. The forecasts point to a relatively constant average of approximately 30 stillbirths per quarter, but with wider relative error (MAPE  $\approx$  34%) and positive mean percentage error, suggesting a tendency to over-predict. This weaker performance is unsurprising, as stillbirths are rarer events and more sensitive to complex, often unobserved determinants such as maternal comorbidities, quality and timeliness of intrapartum care, referral delays, and socio-economic constraints. The low R² highlights that purely univariate time series models are limited in explaining or predicting stillbirths, which aligns



ISSN(Online): 3090-2959

Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

with broader evidence that stillbirths are driven by multifactorial clinical and social risks rather than simple temporal dependence.

The relative stability of stillbirth forecasts around 30 cases per quarter is clinically concerning, as it suggests a persistent burden despite global and national efforts to reduce preventable fetal deaths. This is consistent with literature showing that declines in stillbirth rates have lagged behind improvements in neonatal survival, particularly in low- and middle-income countries. The findings therefore underscore the necessity of strengthening antenatal surveillance for high-risk pregnancies, improving intrapartum monitoring, and addressing barriers to timely access to skilled birth care. They also support calls for integrating stillbirth prevention more explicitly within maternal and newborn health strategies and within the monitoring framework for Sustainable Development Goal 3.

Several limitations should be acknowledged. First, the analysis is based on data from a single tertiary facility and may not reflect community births or patterns in primary and secondary facilities. Second, the models are purely univariate and do not incorporate important covariates such as maternal age, parity, referral status, or policy changes, which could improve explanatory power and forecasting accuracy, particularly for stillbirths. Third, potential changes in data quality, coding practices, or service organization over the 20-year period could have influenced the observed patterns.

Despite these limitations, the study demonstrates the practical value of time series modeling as a decision-support tool for hospital managers and policy makers. The models can inform capacity planning, highlight the need for targeted interventions during periods of expected higher demand, and serve as a baseline against which the impact of maternal and perinatal health programs can be evaluated. Future work should explore multivariate and regime-switching models, incorporate clinical and socio-demographic covariates, and extend analyses across multiple facilities to provide a more comprehensive picture of livebirth and stillbirth dynamics in Nigeria.

### CONCLUSSION



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

This study demonstrates the usefulness of timeseries modeling in analyzing livebirth and stillbirth trends at Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC), Ile-Ife, Nigeria, over a twenty year period (2001 to 2020). The ARMA (2,3) and ARMA(1,3) models were identified as the most appropriate for livebirths and stillbirths, respectively, based on model selection criteria such as AIC, BIC, and HQIC. Diagnostic checks confirmed that the residuals of both models exhibited no significant autocorrelation, indicating that the models adequately captured the underlying data patterns. Forecast results revealed that livebirths are likely to experience slight short term fluctuations before stabilizing while stillbirths are projected to remain relatively low coefficient of determination R<sup>2</sup> values, particularly for stillbirths, suggest the possible influence of external an unmeasured factors such as access to quality healthcare services, maternal health conditions, socio-economic circumstances. The findings highlight the importance of continuous monitoring and improvement of maternal healthcare systems as well as the integration of data driven forecasting in public health decision making. Policy makers and healthcare administrators are encouraged to utilize such statistical modeling techniques to anticipate reproductive health trends, allocate resources efficiently and design timely interventions aimed at reducing stillbirth rates and improving maternal and neonatal outcomes.

### **REFERENCES**

Aminu, M., Bar-Zeev, S., van den Broek, N., & Broak, N (2014). Causes of and factors associated with stillbirth in low- and middle income countries: A systematic literature review. BJOG: An International Journal of Obstetrics & Gynaecology, 121, 141-153. <a href="https://doi.org/10.1111/1471-0528.12995">https://doi.org/10.1111/1471-0528.12995</a>

Bhutta, Z. A., Das, J. K., Bahl, R., Lawn, J. E., Salam, R. A., Paul, V. K, ... & Walker, N. (2014). Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what Cost? The Lancet, 384(9940), 347-370. https://doi.org/10.1016/S0140-6736(14)60792-3



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

- Blencowe, H., Cousens, S., Jassir, F. B., Say, L., Chou, D., Mathers, C., ... & Lawn, J. E. (2016). National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: A systematic review analysis. The Lancet. Global Health, 4(2), e98 e108. <a href="https://doi.org/10.1016/S2214-109X(15)00275-2">https://doi.org/10.1016/S2214-109X(15)00275-2</a>
- Blencowe, H., et al. (2016). Stillbirths: rates, risk factors, and acceleration towards 2030. The Lancet, 387(10018), 587-603.
- Blencowe, H., Lawin, J. E., Vazquez, T., Fottrell, E., & Lawin, J. (2020). Stillbirths: Progress and unfinished business: The Lancet, 396(10256), 1125-1128. <a href="https://doi.org/19.1016/S0140-6736(20)31987-7">https://doi.org/19.1016/S0140-6736(20)31987-7</a>
- Cacclatore, J., Froen, J.F., & Hutti, M.H. (2013): The impact of stillbirth on parents: A literature review. Journal of Obstetric, Gynecologic & Neonatal Nursing, 42(2), 223-230.
- Chuwa, F.S., Mwanamsangu, A.H., Brown, B.G., Msuya, S. E., Senkoro, E. E., Mnali, C. B.,... & Mlay, R. (2017). Maternal and fetal risk factors for stillbirth in Northern Tanzania: A registry-based retrospective cohort study. PLoS ONE. 12(8), e0182250. <a href="https://doi.org/10.1371/journal.pone.0182250">https://doi.org/10.1371/journal.pone.0182250</a>
- Gebremedhin, T., Bekele, D., & Degu, A. (2021). Application of time series models for forecasting maternal and child health indicators; Evidence from Ethiopia. BMC medical Informatics and Decsion Making, 21(1), 1-10. <a href="https://doi.org/10.1186/s12911-021-01559-0">https://doi.org/10.1186/s12911-021-01559-0</a>
- Hug, L., You, D., Blencowe, H., Mishra, A., Wang, Z., Fix, M. J.,... & Aikema, L (2021). Global, regional, and national estimates and tends in stillbirths from 2000 to 2019: A systematic assessment. The Lancet, 399(10302), 772-785. <a href="https://doi.org/10.10016/SD140-6736(21)01112-0">https://doi.org/10.10016/SD140-6736(21)01112-0</a>
- Katz, J., Lee, A.C., Kozuki, N., et al. (2015). The contribution of stillbirths to neonatal mortality. A systematics review and meta analysis. BMC Pregnancy and Childbirth, 15(1), 1-10.
- Kibret. K. T., Nigussie, T. S., & Mamo, B. D (2023). Factors associated with stillbirth among women who gave birth in hospitals of southern Ethopia: A case-control study. BMC Pregnancy and Childbirth, 23, 51, <a href="https://doi.org/10.1186/s12884.023-05385-6">https://doi.org/10.1186/s12884.023-05385-6</a>



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

https://journal.as-salafiyah.id/index.php/ijir/index

Email: ijireditor7@gmail.com

- Lawn, J. E., Blencowe, H., Waiswa, P., Amouzou, A., Mathers, C., Hogan, D.,... & Cousens, S. (2016). Stillbirths: Rates, risk factors, and acceleration towards 2030. The Lancet. 387(10018),587-603. https://doi.org?10.1016/S0140-6736(15)008337-5
- Liu, L., Oza, S., Hogan, D., Chu, Y., Perin, J., Zhu, J., ... & Black, R. E. (2020). Global, regional and national causes of under-5 mortality in 2000 19: An updated systematic analysis with implications for the sustainable Development Goals. The Lancet Child & Adolescent Health, 4(6), 398 407. <a href="https://www.who.int/publications/i/item/9789240005767">https://www.who.int/publications/i/item/9789240005767</a>
- Malacova, E., Li, J., Regan, A., Christian, H., Westrupp, E., Nicholson, J. M., & Oddy, W. H. (2018). Risk of stillbirth, preterm delivery, and small for gestational age infants in women with a history of depression: A population-based cohort study. (2018). International Journal of Epidemiology. 47(5). 1440 -1451. <a href="https://doi.org/10.1093?ije/dyy160">https://doi.org/10.1093?ije/dyy160</a>
- Mathews, T. J., & Hamilton, B. E. (2016). Delayed childbearing: Trends and implications for childbearing and family structure. National Center for Health Statistics data Brief, (21).
- McClure, E. M., Goldenberg, R. L., & Reddy, U. M. (2016). The prevention of stillbirth: A clinical practice guideline. American Journal of Obstetrics & Gynecology, 215(2), 119-124.
- Odendaal, H.J., Wright, C. A., Viljoen, D., Hail, D. R., Groove, D., Vanker, N., Smith, M., & Vanzyl, N. (2021). Stillbirth at term: Case-control study of risk factors growth status, and placental histology. JAMA Network Open, 4(12), e2137356. https://doi.org/10.1001/ja,anetworkopen.2021.37356
- Okonofua, F. (2019). Stillbirths in Nigeria: A neglected tragedy. African Journal of Reproductive Health, 23(1), 9 14.
- Tuncalp, O., Hindin, M. J., Souza, J. P., Chou, D., & Say, L. (2015). The prevalence of maternal near miss: A systematic review. BLOG: An International Journal of Obstetrics & Gynaecology, 119(6), 653 661. <a href="https://doi.org?101111/j.1471-0528.2012.03294.x">https://doi.org?101111/j.1471-0528.2012.03294.x</a>
- WHO (2015). Stillbirth Estimates by Country: 2000-2015. World Health Organization. https://www.who.int/publications/m/item/stillbirth-estimates-by-country



ISSN(Online): 3090-2959 Vol 2 no 1 (2026): January 2026

 $\underline{https://journal.as\text{-}salafiyah.id/\underline{index.php/ijir/index}}$ 

Email: ijireditor7@gmail.com

World Health Organization (WHO). (2014). Every Newborn: an action plan to end preventable deaths. Geneva. WHO.

- World Health Organization (WHO). (2015). The Global Strategy for Women's Children's and Adolescents' Health (2016 2030). Geneva. WHO
- World Health Organization (WHO). (2020). Improving maternal and newborn health and survival and reducing stillbirth: Strategic directions 2020-2025. <a href="https://www.who.int/publications/i/item/9789240005767">https://www.who.int/publications/i/item/9789240005767</a>
- World Health Organization (WHO). (2021). Maternal and perinatal health. <a href="http://www.who.int/health-topics/maternal-and">http://www.who.int/health-topics/maternal-and</a> -perinatal-health#tab=tab\_1
- World Health Organization (WHO). (2022). Stillbirths. Retrieved June 26, 2025, from <a href="https://www.who.int/health-topics/stillbirths">https://www.who.int/health-topics/stillbirths</a>