

Cryptocurrency And Environmental Sustainability: A Narrative Review From A Financial Management Perspective

¹Muhammad Imam Taufik, ²Muhammad Rijal Alim Rahmat

¹Universitas Hasanuddin, Indonesia. ²Universitas Negeri Makassar, Indonesia.

¹imam.taufiq0@gmail.com ²muhammadrijalalim@unm.ac.id

**Correspondence Email: imam.taufiq0@gmail.com*

Abstract: Bitcoin's rise as a decentralized digital asset has been accompanied by serious concerns over its environmental impact. This paper examines Bitcoin's energy consumption, carbon emissions, and environmental footprint from a financial management perspective, emphasizing the implications for ESG risk, capital allocation, and sustainability disclosure. Employing a structured literature review, this study synthesizes 2023–2024 research on Bitcoin's environmental damages and evaluates technological and policy mitigation strategies. Findings show Bitcoin's annual energy use exceeds 130–175 TWh, contributing to over 90 MtCO₂ emissions, with substantial reputational and financial risks for firms involved. Policy responses including bans, taxation, and mandatory disclosure are shaping the crypto ecosystem. From a financial standpoint, Bitcoin's sustainability performance increasingly affects investment access, cost of capital, and long-term viability. This research urges financial managers to actively mitigate and disclose crypto-linked environmental risks. Building on these findings, the paper further highlights how Bitcoin-related environmental externalities are no longer peripheral issues but have become material financial risks that must be integrated into strategic decision-making. Institutional investors, lenders, and asset managers are increasingly incorporating climate-related metrics into portfolio evaluation, thereby intensifying scrutiny of crypto-exposed firms. The study also discusses how ESG-oriented regulations and global climate commitments amplify pressure on financial institutions to reassess their exposure to energy-intensive digital assets. Moreover, advances in renewable energy adoption, efficiency improvements in mining hardware, and shifts in consensus mechanisms are evaluated as partial mitigation pathways, though their financial feasibility remains uneven.

Keywords: Bitcoin, Environmental Sustainability, Financial Management, ESG Risk, Cryptocurrency Emissions

INTRODUCTION

The rapid expansion of cryptocurrency has fundamentally altered the architecture of global finance, redefining how value is created, stored, and transferred across borders. Among digital assets, Bitcoin remains the most prominent and influential, serving as the first decentralized cryptocurrency and the benchmark for the broader crypto ecosystem. Initially conceived as an alternative to centralized monetary systems, Bitcoin has increasingly attracted institutional investors, corporations, and financial intermediaries seeking diversification, speculative returns, and hedging

opportunities. However, as Bitcoin's financial relevance has grown, so too have concerns regarding its environmental sustainability, particularly in relation to energy consumption and carbon emissions generated by its proof-of-work (PoW) consensus mechanism (Stoll et al., 2019; Chamana et al., 2023).

Bitcoin's PoW system requires miners to perform continuous, computationally intensive calculations to validate transactions and secure the network. This process demands substantial electricity, often sourced from carbon-intensive energy grids. Recent estimates suggest that Bitcoin's annual electricity consumption ranges between 130 and 175 terawatt-hours (TWh), placing it on par with the energy usage of several sovereign states (Cambridge Centre for Alternative Finance [CCAF], 2023; Stoll et al., 2023). Correspondingly, Bitcoin's carbon footprint has been estimated to exceed 90 million metric tons of CO₂ annually, raising significant environmental and social concerns. These figures have positioned Bitcoin at the center of global debates on sustainable development, climate change mitigation, and responsible financial innovation.

From a financial management perspective, the environmental externalities associated with Bitcoin are no longer marginal or reputational issues alone. Instead, they have evolved into material financial risks that directly influence firm valuation, access to capital, and long-term strategic viability. The integration of environmental, social, and governance (ESG) criteria into investment decision-making has intensified scrutiny of carbon-intensive activities across all sectors, including digital finance. Institutional investors, asset managers, and lenders increasingly incorporate climate-related metrics into portfolio evaluation and risk assessment processes, thereby affecting capital allocation decisions involving crypto-exposed firms (Bouri et al., 2022; IMF, 2023). Consequently, Bitcoin's sustainability profile now plays a critical role in shaping financial outcomes.

Regulatory developments further amplify the financial significance of Bitcoin's environmental impact. Governments and international institutions have begun to address the environmental consequences of cryptocurrency mining through a range of policy instruments, including mining bans, carbon taxation, energy disclosure requirements, and integration of crypto-assets into broader climate and financial regulatory frameworks (OSTP, 2022; European Central Bank [ECB], 2023). Such interventions have direct implications for operational costs, geographic allocation of

mining activities, and regulatory compliance risks. For financial managers, these dynamics introduce heightened uncertainty and necessitate proactive strategies to manage regulatory exposure and sustainability-related risks.

Despite the growing body of research on Bitcoin's energy consumption and emissions, much of the existing literature approaches the issue from technical, engineering, or energy economics perspectives. While these studies provide valuable quantitative insights, they often fail to translate environmental impacts into financial risk metrics that are meaningful for managers, investors, and policymakers. There remains a notable gap in synthesizing recent empirical findings through a financial management lens that explicitly connects environmental sustainability to ESG risk, cost of capital, disclosure obligations, and strategic decision-making. Addressing this gap is increasingly urgent as sustainability considerations become embedded within global financial governance frameworks.

Global climate commitments and sustainability initiatives further reinforce the relevance of this issue. International agreements such as the Paris Agreement and the expansion of climate-related financial disclosure standards have heightened expectations for transparency and accountability regarding carbon-intensive activities. Financial institutions are now expected to integrate climate risks into enterprise risk management systems and to disclose material environmental exposures in accordance with internationally recognized standards (Task Force on Climate-related Financial Disclosures [TCFD], 2021; International Sustainability Standards Board [ISSB], 2023). Within this context, Bitcoin-related environmental risks pose a significant challenge to financial managers seeking to align innovation with sustainability objectives.

In response to mounting criticism, various technological and market-based mitigation strategies have emerged within the Bitcoin ecosystem. These include increased adoption of renewable energy sources for mining, improvements in hardware efficiency, and proposals to modify or replace PoW with less energy-intensive consensus mechanisms. While such measures may reduce environmental harm, their financial feasibility and scalability remain uneven and contested (Gallersdörfer et al., 2023; Digiconomist, 2024). For financial managers, assessing the cost-effectiveness and long-term viability of these mitigation pathways is essential to informed decision-making.

This study aims to contribute to the literature by providing a narrative review of recent research (2023–2024) on Bitcoin and environmental sustainability from a financial management perspective. By focusing exclusively on Bitcoin, the analysis avoids conflating heterogeneous cryptocurrency designs and highlights the specific challenges posed by PoW-based systems. The review synthesizes evidence on energy consumption, emissions, regulatory responses, and mitigation strategies, while explicitly linking these factors to ESG risk, capital allocation, and sustainability disclosure. Through this approach, the paper seeks to support financial managers, policy-makers, and scholars in understanding how Bitcoin's environmental externalities have become material financial risks that must be integrated into strategic planning and governance. Ultimately, the study argues that responsible financial management in the digital asset era requires transparent assessment, proactive mitigation, and alignment with global sustainability commitments.

METHOD

This study employs a structured narrative review to analyze Bitcoin's environmental sustainability from a financial management perspective. A narrative review approach is appropriate for synthesizing multidisciplinary evidence and policy-oriented research where experimental control is not feasible and where conceptual integration is required (Baethge et al., 2019). By focusing exclusively on Bitcoin, the analysis avoids conflating heterogeneous cryptocurrency architectures and instead highlights the specific environmental and financial challenges associated with proof-of-work (PoW) consensus mechanisms. This focus enables a clearer assessment of how Bitcoin's environmental externalities translate into material ESG risks affecting capital allocation, investment decisions, and financial governance.

The review prioritizes peer-reviewed journal articles and authoritative institutional reports published between 2023 and 2024. Academic sources were identified through systematic searches in Scopus, Web of Science, and Google Scholar to ensure comprehensive coverage of recent empirical findings. In addition, institutional publications were included to capture regulatory, policy, and governance perspectives that are highly relevant to financial management practice. These sources include reports from the Cambridge Centre for Alternative Finance (2023), the International Monetary Fund (IMF, 2023), and the United States Office of Science and Technology Policy

(OSTP, 2022), which provide standardized data and policy evaluations widely cited in sustainability and finance literature.

Study selection followed a multi-stage screening process. First, titles and abstracts were reviewed to identify studies explicitly addressing Bitcoin's energy consumption, carbon emissions, or environmental footprint. Second, full-text screening was conducted to assess methodological rigor, data transparency, and relevance to financial outcomes. Studies were prioritized if they met at least one of the following criteria: (i) quantitative estimation of Bitcoin's electricity demand or greenhouse gas emissions (Cambridge Centre for Alternative Finance, 2023); (ii) evaluation of mitigation strategies, including renewable energy adoption, mining efficiency improvements, or grid-balancing programs (Chamanara et al., 2023); (iii) analysis of regulatory instruments such as mining restrictions, taxation, or sustainability disclosure mandates (OSTP, 2022); and (iv) explicit linkage between environmental performance and financial variables, including ESG risk exposure, cost of capital, or investment accessibility (IMF, 2023).

Data synthesis was conducted using a thematic analysis approach, grouping findings into four analytical dimensions: environmental impact measurement, policy and regulatory responses, technological mitigation pathways, and financial implications. Given the dynamic relocation of Bitcoin mining activities and limited disclosure by mining operators, published estimates often vary significantly. To address this limitation, the review reports ranges rather than single-point estimates and triangulates findings across independent studies, an approach recommended to enhance robustness in narrative evidence synthesis (Baethge et al., 2019). This methodological strategy strengthens the reliability of conclusions regarding Bitcoin's environmental sustainability and its growing relevance as a material financial risk requiring integration into strategic planning and ESG-aligned financial management.

RESULT AND DISCUSSION

Environmental Footprint of Bitcoin: Energy Consumption and Emissions as Material Risk

The reviewed literature consistently demonstrates that Bitcoin's environmental footprint remains substantial and structurally embedded in its proof-of-work (PoW) consensus mechanism. Recent converging estimates indicate that, during the 2023–2024 period, Bitcoin's annual electric-

ity consumption ranged between approximately 130 and 175 terawatt-hours (TWh), a scale comparable to that of several mid-sized industrialized economies (Cambridge Centre for Alternative Finance [CCAF], 2023; Stoll et al., 2023). This level of energy demand is not incidental but inherent to the competitive mining process that underpins network security, whereby computational intensity directly determines transaction validation and block creation. As a result, Bitcoin's environmental footprint exhibits a structural rigidity that limits the effectiveness of marginal efficiency improvements in reducing absolute energy demand.

Correspondingly, Bitcoin's carbon emissions have been estimated to range from approximately 80 to over 100 million metric tons of CO₂ annually, depending on the geographic distribution of mining activities and the carbon intensity of local electricity grids (Chamanara et al., 2023; Stoll et al., 2023). Regions reliant on coal- or gas-dominated power systems significantly amplify Bitcoin's climate impact, whereas operations connected to low-carbon grids only partially mitigate emissions without addressing total energy growth. This dependence on regional energy mixes introduces volatility and uncertainty into emissions profiles, complicating sustainability assessments and increasing exposure to climate-related regulatory interventions.

Beyond greenhouse gas emissions, recent research emphasizes that Bitcoin mining generates a broader set of environmental externalities that are increasingly recognized as material. Water consumption associated with cooling systems places additional stress on local water resources, particularly in arid regions where mining facilities compete with residential and agricultural users (Chamanara & Madani, 2023). Land use impacts, including the concentration of industrial-scale mining infrastructure, raise concerns related to ecosystem disruption and local environmental degradation. Furthermore, the rapid obsolescence of application-specific integrated circuit (ASIC) hardware contributes to significant volumes of electronic waste, as competitive pressures incentivize frequent equipment replacement rather than lifecycle optimization (Office of Science and Technology Policy [OSTP], 2022). These cumulative impacts reinforce the conclusion that Bitcoin's environmental challenges extend well beyond carbon emissions alone.

From a financial management perspective, these environmental externalities increasingly translate into material financial risks rather than abstract ethical considerations. Institutional investors, lenders, and asset managers now integrate environmental, social, and governance (ESG)

metrics into risk assessment frameworks, with carbon intensity and environmental exposure serving as key indicators of long-term financial resilience (International Monetary Fund [IMF], 2023). Firms with direct or indirect exposure to Bitcoin—such as mining companies, crypto exchanges, payment platforms, and corporates holding Bitcoin as a treasury asset—face heightened scrutiny regarding their environmental performance and disclosure practices. In this context, Bitcoin-related environmental risks can influence cost of capital, insurance premiums, investor confidence, and regulatory compliance costs.

Consequently, the environmental footprint of Bitcoin has evolved from a reputational concern into a quantifiable financial risk that must be incorporated into strategic decision-making. Financial managers are increasingly required to assess not only price volatility and technological risks but also the sustainability implications of Bitcoin exposure. As global climate commitments and sustainability disclosure standards continue to tighten, failure to adequately manage and disclose Bitcoin-related environmental risks may undermine long-term firm value and access to institutional capital. In this sense, Bitcoin's environmental footprint represents a material risk factor that is now inseparable from responsible financial governance in the digital asset economy.

Technological and Market-Based Mitigation Strategies: Opportunities and Limitations

The reviewed literature identifies a range of technological and market-based strategies intended to mitigate Bitcoin's environmental impact; however, their effectiveness remains uneven and context-dependent. One of the most prominent mitigation pathways involves shifting Bitcoin mining operations toward low-carbon or renewable energy sources, including hydroelectric, wind, solar, and nuclear power. Empirical evidence indicates that mining firms have increasingly relocated to regions characterized by abundant renewable energy supply and flexible electricity markets, particularly in parts of North America and Northern Europe (DLA Piper, 2023; Stoll et al., 2023). These relocation strategies are often driven by both cost considerations and growing pressure from investors and regulators to reduce carbon intensity. While renewable sourcing can significantly lower emissions per unit of electricity consumed, the overall environmental benefit depends on whether mining utilizes genuinely additional clean energy or competes with other sectors for limited renewable capacity.

Improvements in mining hardware efficiency constitute a second major mitigation strategy. Advances in application-specific integrated circuit (ASIC) technology, along with innovations in

immersion cooling and advanced thermal management systems, have substantially reduced the energy required per unit of computational output (Gallersdörfer et al., 2023). These developments have lowered emissions intensity and improved the operational efficiency of mining facilities. Nevertheless, the literature consistently warns of a rebound effect: as efficiency improves and operating costs decline, mining activity tends to expand, driven by higher profitability and rising Bitcoin prices. As a result, reductions in energy intensity do not necessarily translate into absolute reductions in total energy consumption or emissions at the network level (Office of Science and Technology Policy [OSTP], 2022). This dynamic highlights a structural limitation of efficiency-driven mitigation in proof-of-work systems.

A third mitigation pathway involves integrating Bitcoin mining operations into electricity markets as flexible or interruptible loads. Under this model, miners adjust their energy consumption in response to grid conditions, absorbing surplus renewable generation during periods of oversupply and curtailing operations during peak demand. Evidence from jurisdictions such as Texas suggests that demand-response participation can contribute to grid stability and facilitate greater penetration of variable renewable energy sources (Bante & Long, 2023). From a systems perspective, this approach may improve overall energy efficiency and reduce curtailment of renewable generation. However, the net environmental benefit remains contested. Critics argue that without robust regulatory oversight, flexible load arrangements risk subsidizing energy-intensive activities and prolonging reliance on fossil-based backup generation, particularly in regions where grid decarbonization is incomplete.

Market-based mechanisms also play a growing role in shaping mitigation outcomes. Long-term power purchase agreements (PPAs) for renewable electricity, voluntary carbon offsetting, and ESG-linked financing instruments have been adopted by some mining firms as part of broader sustainability strategies. These mechanisms can improve transparency and signal environmental commitment to investors and lenders. Nevertheless, recent studies caution that voluntary measures alone are insufficient to ensure meaningful emissions reductions, especially in the absence of standardized disclosure requirements and independent verification (IMF, 2023). Moreover, offset-based approaches do not address local environmental externalities such as water use, land impacts, and electronic waste generation associated with mining operations.

Taken together, the literature suggests that technological and market-based mitigation strategies can reduce emissions intensity and moderate some environmental impacts, but they fall short of delivering transformative change. Absolute emissions remain closely tied to Bitcoin's economic incentives, price dynamics, and the carbon intensity of regional energy systems. As long as proof-of-work mining rewards scale with computational effort, efficiency gains and renewable adoption risk being offset by growth in total network activity (OSTP, 2022). Consequently, mitigation strategies tend to yield incremental improvements rather than alignment with global climate targets such as those articulated under the Paris Agreement.

From a financial management perspective, these limitations underscore the importance of complementary policy and governance mechanisms. Technological solutions can reduce risk exposure and improve ESG performance at the firm level, but they cannot fully internalize environmental externalities without supportive regulatory frameworks. For investors and financial managers, this implies that mitigation efforts should be evaluated not only in terms of technical feasibility but also in relation to policy credibility, disclosure quality, and long-term alignment with global sustainability commitments. In this context, technological and market-based strategies represent necessary but insufficient components of a comprehensive approach to managing Bitcoin's environmental and financial risks.

Financial and Regulatory Implications: ESG Risk, Capital Allocation, and Disclosure

Recent literature demonstrates a clear convergence between environmental sustainability and financial governance in the cryptocurrency sector, with Bitcoin positioned at the center of this transformation. As climate risks become embedded within global financial regulation, Bitcoin's energy-intensive proof-of-work (PoW) mechanism has attracted increasing scrutiny from regulators, supervisors, and standard-setting bodies. Regulatory responses have expanded beyond isolated national interventions toward a more systemic integration of crypto-assets into climate and financial risk frameworks. These developments signal that Bitcoin's environmental footprint is no longer treated as an externality but as a factor with direct implications for financial stability and market integrity (Bank for International Settlements [BIS], 2023).

Regulatory approaches to Bitcoin's environmental impact vary across jurisdictions but share a common objective of internalizing sustainability risks. Several governments have implemented

or proposed restrictions on mining activities linked to carbon-intensive power sources, while others have adopted market-based and disclosure-oriented instruments. The European Union's Markets in Crypto-Assets Regulation (MiCA) represents a landmark shift by requiring crypto-asset service providers to disclose standardized information on energy consumption and environmental impacts. Such measures reflect a broader regulatory philosophy in which transparency and comparability are used to align private market incentives with public climate objectives (European Securities and Markets Authority [ESMA], 2023).

From a financial management perspective, disclosure-based regulation is particularly consequential because it directly affects capital market behavior. Mandatory sustainability reporting reduces information asymmetry between firms and investors, enabling environmental performance to be priced into investment decisions. Empirical studies in sustainable finance indicate that firms subject to rigorous environmental disclosure requirements face stronger market discipline, as investors increasingly differentiate assets based on climate exposure and transition risk (Krueger, Sautner, & Starks, 2020). Applied to Bitcoin-related firms, this implies that mining companies, exchanges, and corporates holding Bitcoin are increasingly evaluated not only on financial returns but also on their carbon intensity and environmental governance.

The integration of ESG considerations into capital allocation decisions is accelerating this dynamic. Large institutional investors, including pension funds and sovereign wealth funds, have adopted climate-aligned investment mandates that limit exposure to assets perceived as environmentally unsustainable. As a result, Bitcoin-related activities may face higher financing costs or restricted access to capital unless accompanied by credible decarbonization and transparency strategies. Recent surveys of global asset managers show that climate risk is now viewed as a core financial risk rather than a non-financial concern, reinforcing the link between environmental performance and cost of capital (BlackRock, 2023).

Climate-related financial disclosure frameworks further reinforce these pressures. The recommendations of the Task Force on Climate-related Financial Disclosures (TCFD) and the introduction of IFRS S2 by the International Sustainability Standards Board (ISSB) have established global expectations for consistent reporting of climate risks, emissions, and transition strategies. Although these frameworks are sector-neutral, their application to crypto-exposed firms implies that Bitcoin-related emissions may need to be incorporated into enterprise-wide risk management

and financial reporting processes. Failure to do so may expose firms to regulatory sanctions, litigation risk, and reputational damage (ISSB, 2023; Financial Stability Board [FSB], 2022).

The literature also highlights growing supervisory concern over the systemic implications of crypto-related climate risks. Central banks and financial regulators increasingly recognize that concentrated exposure to energy-intensive digital assets could amplify transition risks during periods of tightening climate policy. The Network for Greening the Financial System (NGFS) has explicitly warned that emerging sectors with high emissions intensity, including crypto mining, warrant closer monitoring within prudential supervision frameworks (NGFS, 2023). This perspective further embeds Bitcoin's environmental performance within macroprudential and financial stability considerations.

Collectively, these developments indicate that Bitcoin's environmental sustainability now functions as a financial filter shaping participation in regulated capital markets. Environmental performance influences not only regulatory compliance but also investor confidence, funding conditions, and long-term strategic viability. For financial managers, the implication is clear: effective governance of Bitcoin-related activities requires proactive integration of ESG risk, robust sustainability disclosure, and alignment with evolving global climate and financial standards. Bitcoin's future role in institutional finance will therefore depend not solely on technological resilience or market adoption, but increasingly on its capacity to operate within sustainability-driven financial norms.

CONCLUSION

This narrative review demonstrates that Bitcoin's environmental footprint has evolved into a material issue for financial management rather than a peripheral sustainability concern. Evidence from recent literature confirms that Bitcoin's proof-of-work consensus mechanism entails country-scale electricity consumption and substantial carbon emissions, accompanied by broader externalities such as water stress, land-use impacts, and electronic waste. These environmental pressures have triggered intensified scrutiny from regulators, investors, and financial institutions, fundamentally altering the risk profile of Bitcoin-related activities. From a financial perspective, environmental performance now directly influences valuation, access to capital, regulatory compliance, and long-term strategic viability. Technological mitigation strategies—including renewable energy

sourcing, efficiency improvements, and grid integration—can reduce emissions intensity, but their capacity to deliver absolute reductions remains limited by economic incentives and network growth dynamics. As a result, Bitcoin's sustainability challenges persist as structurally embedded features of its current design.

The findings further underscore a decisive shift in financial governance, whereby ESG considerations and climate-related disclosures increasingly shape capital allocation decisions in the cryptocurrency ecosystem. Regulatory frameworks, sustainability reporting standards, and institutional investment mandates collectively embed environmental risk into market discipline, transforming Bitcoin's environmental externalities into quantifiable financial risks. For financial managers, this implies that exposure to Bitcoin can no longer be assessed solely through the lenses of price volatility and technological innovation. Instead, responsible financial management in the digital asset era requires transparent assessment of environmental impacts, proactive mitigation strategies, and alignment with global sustainability and climate governance frameworks. Firms that fail to address these dimensions risk higher financing costs, constrained investor access, and reputational damage, while those adopting credible, verifiable sustainability practices may preserve strategic flexibility and capital market confidence. Overall, Bitcoin's long-term role in global finance will depend not only on its technological robustness and market adoption but increasingly on its capacity to adapt to sustainability-driven financial norms. Integrating environmental considerations into financial decision-making is therefore essential to reconciling cryptocurrency innovation with the imperatives of sustainable and resilient financial systems.

REFERENCE

Baethge, C., Goldbeck-Wood, S., & Mertens, S. (2019). SANRA—A scale for the quality assessment of narrative review articles. *Research Integrity and Peer Review*, 4(1), 5.
<https://doi.org/10.1186/s41073-019-0064-8>

Bank for International Settlements. (2023). *Annual economic report 2023*. BIS.

Bante, S., & Long, C. (2023). *Investor priorities have shifted for Bitcoin mining operations*. RSM US LLP. <https://rsmus.com/insights/industries/financial-services/investor-priorities-shifted-bitcoin-mining-operations.html>

BlackRock. (2023). *Global institutional investor survey: Navigating the energy transition*. BlackRock Investment Institute.

Bouri, E., Das, M., Gupta, R., & Roubaud, D. (2022). Climate policy uncertainty and the cryptocurrency market. *Finance Research Letters*, 45, 102130. <https://doi.org/10.1016/j.frl.2021.102130>

Cambridge Centre for Alternative Finance. (2023). *Cambridge Bitcoin electricity consumption index*. University of Cambridge. <https://ccaf.io>

Chamanara, R., Ghaffarizadeh, A., & Madani, K. (2023). Bitcoin mining and climate change: Policy implications for sustainability. *Energy Policy*, 173, 113362. <https://doi.org/10.1016/j.enpol.2023.113362>

Chamanara, S., & Madani, K. (2023). *The hidden environmental cost of cryptocurrency: How Bitcoin mining impacts climate, water and land*. United Nations University – Institute for Water, Environment and Health (UNU-INWEH). <https://unu.edu/press-release/un-study-reveals-hidden-environmental-impacts-bitcoin-carbon-not-only-harmful-product>

Chamanara, S., Ghaffarizadeh, S. A., & Madani, K. (2023). The environmental footprint of Bitcoin mining across the globe: Call for urgent action. *Earth's Future*, 11(10), e2023EF003871. <https://doi.org/10.1029/2023EF003871>

Digiconomist. (2024). *Bitcoin energy consumption index*. <https://digiconomist.net>

DLA Piper. (2023, February). *The role of Bitcoin mining in renewables projects*. DLA Piper Insights. <https://www.dlapiper.com/en/insights/publications/2023/02/the-role-of-bitcoin-mining-in-renewables-projects>

European Central Bank. (2023). *Crypto-assets and climate risk*. ECB Occasional Paper Series.

European Securities and Markets Authority. (2023). *Crypto-assets and sustainability: Regulatory challenges and policy responses*. ESMA.

Financial Stability Board. (2022). *Supervisory and regulatory approaches to climate-related risks*. FSB.

Gallersdörfer, U., Klaassen, L., & Stoll, C. (2023). Energy consumption of cryptocurrencies beyond Bitcoin. *Joule*, 7(2), 1–14. <https://doi.org/10.1016/j.joule.2022.12.013>

International Monetary Fund. (2023). *Global financial stability report: Climate change and financial risk*. International Monetary Fund. <https://www.imf.org>

International Sustainability Standards Board. (2023). *IFRS S2: Climate-related disclosures*. IFRS Foundation.

Krueger, P., Sautner, Z., & Starks, L. T. (2020). The importance of climate risks for institutional investors. *The Review of Financial Studies*, 33(3), 1067–1111. <https://doi.org/10.1093/rfs/hhz137>

Network for Greening the Financial System. (2023). *NGFS annual report 2023*. NGFS.

Office of Science and Technology Policy. (2022). *Climate and energy implications of crypto-assets in the United States*. Executive Office of the President of the United States. <https://www.whitehouse.gov/wp-content/uploads/2022/09/Report-Crypto-Assets-and-Climate-September-2022.pdf>

OSTP. (2022). *Climate and energy implications of crypto-assets in the United States*. White House Office of Science and Technology Policy.

Stoll, C., Klaassen, L., & Gallersdörfer, U. (2019). The carbon footprint of Bitcoin. *Joule*, 3(7), 1647–1661. <https://doi.org/10.1016/j.joule.2019.05.012>

Stoll, C., Klaassen, L., Gallersdörfer, U., & Neumüller, A. (2023). Climate impacts of Bitcoin mining in the U.S. *MIT Center for Energy and Environmental Policy Research Working Paper*, 2023–011. <https://cepr.mit.edu/wp-content/uploads/2023/06/MIT-CEEPR-WP-2023-11.pdf>

Stoll, C., Klaaßen, L., Gallersdörfer, U., & Neumüller, C. (2023). Bitcoin's energy consumption revisited. *Nature Communications*, 14, 2458. <https://doi.org/10.1038/s41467-023-38137-4>

Task Force on Climate-related Financial Disclosures. (2021). *Implementing the recommendations of the TCFD*.

United States Office of Science and Technology Policy. (2022). *Climate and energy implications of crypto-assets in the United States*. Executive Office of the President.